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MEDICAL ENTOMOLOGY

Exposure of Bed Bugs to Metarhizium anisopliae at Different
Humidities

KEVIN R. ULRICH,1,2 MARK F. FELDLAUFER,3 MATTHEW KRAMER,4

AND RAYMOND J. ST. LEGER1

J. Econ. Entomol. 107(6): 2190Ð2195 (2014); DOI: http://dx.doi.org/10.1603/EC14294

ABSTRACT Bed bugs Cimex lectularius L. were exposed to conidia (spores) of the entomopatho-
genic fungus Metarhizium anisopliae by feeding, aerosol spray, or contact with a treated surface.
Feeding experiments demonstrated that bed bugs were innately susceptible to this fungus. However,
only at 98% humidity were mortality rates high, regardless of whether bed bugs were sprayed with
a fungal solution or contacted a treated surface. Mortality in treated bed bugs at ambient humidity
did not increase when these bed bugs were kept in aggregation with other bed bugs that had recently
blood fed to repletion. Based on these laboratory studies, we conclude that M. anisopliae is a poor
pathogen for use in control of bed bugs, particularly at humidities that would likely be encountered
under Þeld conditions.

KEY WORDS bed bug, Cimex lectularius, entomopathogenic fungi, Metarhizium anisopliae,
humidity

The global resurgence in bed bug Cimex lectularius L.
populations has demonstrated that controlling this he-
matophagous insect is challenging (Doggett et al.
2012). Bed bugs have evolved widespread resistance
to pyrethroid insecticides (Romero et al. 2007, Zhu et
al. 2010, Davies et al. 2012), and although other chem-
ical classes of insecticides have been developed and
registered for bed bug control, they have exhibited
mixed results (Moore and Miller 2009, Romero et al.
2010, Haynes and Potter 2013, Koganemaru and Miller
2013, Wang et al. 2013). Nonchemical controls have
also been proposed as part of integrated pest manage-
ment strategies (e.g., Wang and Cooper 2011), and
elimination of bed bugs by exposing infestations to
heat (sustained lethal high temperatures) has proven
effective (Pereira et al. 2009, Kells and Goblirsch 2011,
Puckett et al. 2013).

Recently, the entomopathogenic fungus Beauveria
bassiana has been shown to be pathogenic to bed bugs
(Barbarin et al. 2012). Results demonstrated that the
fungus was efÞcacious, and that due to the gregarious
nature of bed bugs, infected individuals could transfer
the fungus to uninfected bed bugs. Another ento-
mopathogenic fungus Metarhizium anisopliae has

been used to target a variety of insect species, includ-
ingplant-feedingmemberof theHemiptera(Shahand
Pell 2003, Zimmermann 2007). This fungus has also
been genetically modiÞed to increase speciÞcity and
efÞcacy (St. Leger et al. 1996, St. Leger and Wang
2010).

In this laboratory study, we investigate the use ofM.
anisopliae as a potential pathogen againstC. lectularius
in the following ways: 1) by feeding conidia to bed
bugs to bypass the cuticle and determine innate sus-
ceptibility to the fungus; and 2) by treating bed bugs
with conidia (aerosol spray and contact) and deter-
mining mortality at three different humidities. Addi-
tionally, because the feeding status of natural infes-
tations of bed bugs may vary (Reinhardt et al. 2010),
we determined mortality of treated, unfed bed bugs
that were comixed with bed bugs that had fed to
repletion.

Materials and Methods

Insects. A colony of C. lectularius was established
from bed bugs originally obtained from Harold Harlan
(Crownsville, MD). This pyrethroid-susceptible col-
ony (Feldlaufer et al. 2014) was kept at ambient con-
ditions (25 � 5�C and 30 � 5% relative humidity
[RH]), and fed weekly on expired human red blood
cells and plasma using an artiÞcial (in vitro) feeding
system (Feldlaufer et al. 2014). We assayed adult
males, adult females, and nymphs (thirdÐÞfth instar)
that had not been fed for 8 d before fungal treatments.
For assays involving blood-fed bed bugs, nymphs and
adults were fed to repletion �2 h before use. Bed bugs
used in all experiments were kept as groups in 240-ml,
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wide mouth Mason jars (Jarden Home Brands, Da-
leville, IN), and provided with fan-folded, Þlter paper
(40 by 140 mm; Whatman No. 1), which acted as a
harborage.
Fungal Isolates. Wild-typeMetarhizium anisopliae

(ARSEF 1548) was obtained from the USDA Ento-
mopathogenic Fungus Collection in Ithaca, NY. This
strain was originally isolated from the rice black bug
Scotinophara coarctata (F.) (Hemiptera: Pentatomi-
dae). Fungal cultures were maintained in 100- by
15-mm sterile, plastic petri dishes (VWR Interna-
tional, Radnor, PA) on Difco potato dextrose agar
(PDA; Becton-Dickinson, Sparks, MD) incubated at
room temperature (Inglis et al. 2012). Virulence was
maintained by passage through bed bug hosts every 2
mo (Butt and Goettel 2000). Cultures were incubated
for 14 d and conidia harvested by scrapping colonies
with a sterile spatula and were suspended in distilled
water containing 0.01% Tween 80 (Sigma-Aldrich, St.
Louis, MO). Spore suspensions were determined us-
ing a hemocytometer (Spencer, Buffalo, NY) and ad-
justed to desired concentrations by diluting in water
containing 0.01% Tween 80.
Ingestion Assays. M. anisopliae conidia were added

to a blood source and then fed to bed bugs to deter-
mine their innate susceptibility. For feeding experi-
ments, 0.5 ml of a spore solution containing 5 � 107

conidia per milliliter was added to 49.5 ml of a bloodÐ
plasma mix to yield a Þnal concentration of 5 � 105

conidia per milliliter, and fed to mixed stages of bed
bugs (n� 729) using an in vitro feeding system (Feld-
laufer et al. 2014). Concentrations of 1 � 105 conidia
per milliliter, 1 � 104 conidia per milliliter, and 1 � 103

conidia per milliliter were also fed to bed bugs (n �
354, 290, and 483, respectively) by Þrst adding 0.5 ml
of a spore solution containing 1 � 107 conidia per
milliliter to 49.5 ml of a bloodÐplasma mix and then
making appropriate dilutions. Control groups con-
sisted of bed bugs (n� 301) fed either bloodÐplasma
containing only 0.01% Tween 80, or bed bugs (n �
282) fedM.anisopliae spores that had been inactivated
by autoclaving 15 min at 121�C. In all feeding exper-
iments, any bed bugs that had not fed to repletion (by
visual observation) were removed and not included in
the analysis. Bed bugs were maintained at room tem-
perature and humidity (25 � 2�C and 30 � 5% RH).
Humidity–TreatmentAssays. We examined the ef-

fect of humidity on the mortality of bed bugs treated
withM. anisopliae conidia by either spray application
or by contact with a treated surface. Different humid-
ity regimes were achieved by conÞning bed bugs in
glass desiccators (150 mm i.d.; Fischer ScientiÞc, Pitts-
burgh, PA) over saturated salt solutions (Wexler and
Hasegawa 1954). Bed bugs were kept over a saturated
solution of calcium chloride (32 � 1% RH) to mimic
ambient or room conditions; over a saturated solution
of sodium chloride (74 � 1% RH); and over distilled
water (98 � 1% RH). In all experiments, temperature
(25 � 2�C) and RH were veriÞed by Traceable relative
humidityÐtemperature meters (Fisher, Pittsburgh,
PA).

Bed bugs were treated in one of the two ways: For
spray applications, bed bugs were placed on Þlter
paper in glass petri dishes and sprayed with M. aniso-
pliae conidia suspended in sterile water containing
0.01% Tween 80. Using 30-ml amber bottles and a
pump applicator (Specialty Bottles, Seattle, WA), we
calculated that each group of bed bugs received
�4.5 � 106 conidia. Treated bed bugs were transferred
to petri dishes (60 by 15 mm) containing untreated
(dry) Þlter paper (47 mm diameter; Whatman No. 1).
Control bugs were sprayed with water containing
0.01% Tween 80 and maintained the same way as the
treated bed bugs.

For contact assays, bed bugs were exposed to M.
anisopliae by being placed on Þlter paper previously
treated with conidia. In these experiments, conidial
suspensions in sterile water containing 0.01% Tween
80 were applied to 47-mm (diameter) Þlter paper disks
(Whatman No. 1) to yield a Þnal concentration of 1 �
105 conidia per centimeter square. Filter papers were
allowed to dry for 120 min before being placed in glass
petri dishes (60 by 15 mm). Bed bugs were then placed
on the dried, treated surface. Bed bugs placed on
Tween 80-treated Þlter paper acted as controls. A total
of 90Ð120 bed bugs (six trials of either 15 or 20 bed
bugs per trial) were used for each humidity treatment,
including controls.

In all experiments, mortality (see Feldlaufer et al.
2014) was assessed daily for 1 wk (168 h) posttreat-
ment. Mycoses were conÞrmed by surface-sterilizing
dead bed bugs with 70% ethanolÐwater followed by
distilled water (Lacey and Solter 2012), and by sub-
sequently maintaining dead bed bugs at 98% RH for an
additional week. Dead individuals were then exam-
ined under a dissecting scope for the presence of
fungus (Humber 2012).
Aggregation Assays. Because bed bug aggregations

can generate humidiÞed boundary layers (Benoit et al.
2007), we conducted an experiment to determine if
bed bugs fed to repletion would produce an aggrega-
tion microclimate (i.e., raise the humidity) that in-
creased mortality in fungal-treated, unfed bed bugs
kept at a low RH. Ten unfed bed bugs were sprayed
with conidia of M. anisopliae, as described in the hu-
midity-treatment assays and kept in Þlter-paper-lined
glass petri dishes with Þve untreated bed bugs that had
recently (�2 h) fed to repletion. Nine trials were run:
90 unfed bed bugs (sprayed with conidia) and 45
untreated blood-fed bed bugs were used. Controls
consisted of two trials (15 bed bugs per trial) of unfed
bed bugs sprayed with conidia. Treated and control
groups were kept over a saturated solution of calcium
chloride (25 � 2�C and 32 � 1% RH) to mimic ambient
humidity.
DataAnalyses. We used a generalized linear model

logistic regression (R Core Team 2013) to test for
mean differences in treatment combinations. In this
model, humidity level, conidia application methods,
and their interaction were independent variables; the
binomial dependent variable was the number of dead
for each trial. An over-dispersion parameter was in-
cluded in the model to accommodate the large dif-
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ferences among the replicates of the contact Þlter
treatment method, allowing for trial-to-trial variabil-
ity. Tests for mean differences were performed using
the R multcomp package (Hothorn et al. 2008). In the
analysis, for each percent relative humidity the con-
trols for aerosol spray and contact were combined;
there was negligible mortality in any control group
where bed bugs contacted Tween 80 by spray or by
contact. All results were back-transformed to the orig-
inal scale (either “proportion dead” or “% mortality”)
for clarity.

Results

IngestionAssays. After ingesting spores ofM.aniso-
pliae, bed bugs died in a dose- and time-dependent
manner, proving them innately susceptible to this en-
tomopathogenic fungus (Fig. 1). Concentrations of
5 � 105 and 1 � 105 spores per milliliter produced 100%
mortality in 72 h and 96 h, respectively. Bed bugs fed
lower concentrations of conidia exhibited lower mor-
talities; a concentration of 1 � 104 spores per milliliter
produced a maximum mortality of 89% after 1 wk (168
h), while a concentration of 1 � 103 spores per mil-
liliter achieved a mortality of only 26% after 1 wk.
Mortality in bed bugs fed blood containing 0.01%
Tween 80 (3 dead of 301; �1%), or inactivated M.
anisopliae spores (8 dead of 282; �3%) was negligible.
Humidity–Treatment Assays. Bed bug mortality at

1 wk postexposure to M. anisopliae conidia varied,
depending largely on the humidity at which the bed
bugs were kept (Fig. 2). By both spray and contact,
mortality was greatest in bed bugs kept at 98% RH.

Mortality in these groups was 71.1% (64/90) by spray
and 97.8% (88/90) by contact, and these differed from
each other and from all other treatments. Mortalities
at the two lower humidities never exceeded 25% (25/
100; aerosol spray at 74% RH), and all but one were not
signiÞcantly different from the Tween 80-treated con-
trols. Mycoses were conÞrmed (noticeable mycelia
growth emanating from appendage joints, etc.) in all
treated bed bugs that died. Although a few control bed
bugs died, no evidence of fungal infection was found
in control groups.
AggregationAssays. Because of the high water con-

tent of recently fed bed bugs, we mixed unfed bed
bugs sprayed with M. anisopliae conidia with un-
treated bed bugs recently blood-fed to repletion in an
effort to determine if mortality in these treated bugs
could be increased over what was observed in the
previous experiment at low humidity (32 � 1% RH).
Mortality in these fungal-treated, unfed bed bugs that
were comixed with untreated, blood-fed bed bugs was
11.1% (5.3%, 21.7%; lower and upper 95% conÞdence
intervals, respectively). This was not signiÞcantly dif-
ferent than the 13.3% mortality (4.1%, 35.4%; lower
and upper 95% conÞdence intervals, respectively) in
the fungal-sprayed, unfed bed bugs kept separate from
fed bugs, and similar to the 17.8% mortality we ob-
served in fungal-sprayed bed bugs kept at 32 � 1% RH
in the previous humidityÐtreatment assays (Fig. 2).

Discussion

M. anisopliae exhibits a broad invertebrate host
range, making this entomopathogenic fungus an at-
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Fig. 1. Mortality in bed bugs fed spores ofM. anisopliae.Conidia ofM. anisopliaewere added to blood products to achieve
the Þnal concentrations indicated, and fed to bed bugs (see Materials and Methods). Mortality (expressed as proportion dead)
was recorded from 1Ð168 h (1 wk) postfeeding. As bed bugs ingest 2Ð8 microliter per insect (see Usinger 1966), the number
of spores theoretically ingested at the different concentrations were 1,000Ð4,000 spores (at 5 � 105 spores; n� 729 bed bugs);
200Ð800 spores (at 1 � 105 spores; n � 354 bed bugs); 20Ð80 spores (at 1 � 104 spores; n � 290 bed bugs); and 2Ð8 spores
(at 1 � 103 spores; n � 483 bed bugs). Control bed bugs (n � 301) fed only 0.01% Tween 80 exhibited �1% mortality after
168 h; bed bugs (n � 282) fed inactivated M. anisopliae spores (autoclaved 15 min at 121�C) had 2.8% mortality at 168 h.
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tractive biological control candidate (Faria and
Wraight 2007). Use of M. anisopliae has been inves-
tigated for controlling a number of arthropods of med-
ical and veterinary importance including mosquitoes
(Blanford et al. 2005; Scholte et al. 2005, 2006; Mnyone
et al. 2009), biting ßies (Kaaya and Munyinyi 1995,
Ansari et al. 2011), and ticks (Kaaya et al. 1996, Fraz-
zon et al. 2000, Kaaya and Hassan 2000, Benjamin et al.
2002, Kirkland et al. 2004). Use of entomopathogenic
fungi to control urban pests such as termites (Rath
2000, Wang and Powell 2004) and cockroaches (Que-
sada-Moraga et al. 2004, Hernandez-Ramirez et al.
2008) has also been reported, though laboratory stud-
ies indicate termites may possess defensive mecha-
nisms to fungal infection (Chouvenc et al. 2009, Chou-
venc and Su 2010). The use of the entomopathogenic
fungus B. bassiana for bed bug control has been dem-
onstrated in the laboratory (Barbarin et al. 2012).
Because we do not know the humidity in the B. bassi-
ana experiments, direct comparisons with our study
cannot be made, though growth and infection of both
fungi can be limited by relative humidity (Maximiano
et al. 2006).

In general, outdoor Þeld effectiveness of M. aniso-
pliae can be limited by unsuitable physical conditions
such as heat, humidity, and sunlight (Jaronski 2010).
Thus, although laboratory bioassays demonstrate that
entomopathogenic fungi have the potential to signif-
icantly reduce pest populations, results of Þeld trials

have been inconsistent. For instance, Benjamin and
colleagues (2002) found M. anisopliae killed 96% of
adult Ixodes scapularis (deer or black-legged) ticks in
the laboratory, but only 53% of ticks treated in the
Þeld. These authors further caution that the 53% mor-
tality in these ticks may be artiÞcially high, as the
treated ticks were subsequently maintained in the
laboratory at relatively high humidity. The need for
high humidities for entomopathogenic fungi to be
effective killing agents has been previously demon-
strated in two species of beetles (Walstad et al. 1970,
Doberski 1981). Our laboratory results with bed bugs
also demonstrate that high humidity is necessary for
mortality.

Because natural infestations of bed bugs usually
contain bed bugs that are of mixed feeding status
(unfed to fully fed), we attempted to mimic Þeld
infestations by combining fungal-treated, unfed bed
bugs with bed bugs that had recently fed to repletion.
Our rationale was that the high water content of
blood-fed individuals might raise the humidity of the
aggregation microenvironment sufÞciently to result in
increased mortality in the fungal-treated bed bugs.
This was not the case, as mortality in these treated bed
bugs was not signiÞcantly different from treated bed
bugs kept with other unfed individuals. A caveat to this
conclusion is that we cannot say whether true aggre-
gations formed or whether any avoidance was exhib-
ited by either fungal-infected or noninfected bed
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bugs. For whatever reason, the microenvironment in
the individual dishes did not promote fungal growth in
treated bed bugs. A detailed review of insect behavior
as it applied to fungal pathogens is given by Baverstock
et al. (2010).

We conclude that mortality in bed bugs treated with
the fungal isolate (ARSEF 1548) ofM. anisopliae used
in this study is humidity dependent. Although this
fungal pathogen can kill bed bugs, the humidity level
required to exceed 70% mortality is deemed imprac-
tical under natural, indoor conditions, and that low
humidity would impede practical use of this strain of
M. anisopliae in a control program aimed at these
indoor, urban pests. Additional studies are needed to
identify other strains of M. anisopliae that are less
impacted by low humidity. Alternatively, the use ofM.
anisopliae in settings that possess higher relative hu-
midities, such as poultry houses, might prove feasible
(see Oliveira et al. 2014).
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